首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6210篇
  免费   1598篇
  国内免费   2041篇
化学   3916篇
晶体学   152篇
力学   675篇
综合类   266篇
数学   1352篇
物理学   3488篇
  2024年   28篇
  2023年   127篇
  2022年   183篇
  2021年   150篇
  2020年   128篇
  2019年   196篇
  2018年   223篇
  2017年   193篇
  2016年   225篇
  2015年   206篇
  2014年   382篇
  2013年   314篇
  2012年   341篇
  2011年   316篇
  2010年   324篇
  2009年   351篇
  2008年   443篇
  2007年   348篇
  2006年   332篇
  2005年   357篇
  2004年   379篇
  2003年   306篇
  2002年   262篇
  2001年   240篇
  2000年   273篇
  1999年   268篇
  1998年   279篇
  1997年   311篇
  1996年   303篇
  1995年   266篇
  1994年   256篇
  1993年   239篇
  1992年   202篇
  1991年   208篇
  1990年   157篇
  1989年   161篇
  1988年   83篇
  1987年   74篇
  1986年   59篇
  1985年   49篇
  1984年   59篇
  1983年   56篇
  1982年   50篇
  1981年   26篇
  1980年   22篇
  1979年   13篇
  1978年   12篇
  1959年   8篇
  1957年   9篇
  1955年   7篇
排序方式: 共有9849条查询结果,搜索用时 15 毫秒
71.
张爽  杨成飞  杨玉波  冯宁宁  杨刚 《化学学报》2022,80(9):1269-1276
锂-氧气电池因其超高的理论比容量而受到科研界的广泛关注, 但其存在较为严重的充放电极化和较差的循环稳定性等问题, 从而极大地限制其商业化进程. 因此设计出有效的正极催化剂是解决锂-氧气电池面临的这些棘手问题的必要手段. 通过对不同充电状态的废旧锂电池正极进行回收制得三种不同锂含量的多元金属氧化物LixMO (x=0.79, 0.30, 0.08; M=Ni/Co/Mn), 并分别用作锂-氧气电池正极催化剂. 系统研究了LixMO材料中锂含量及晶体结构对其电化学性能的影响. 电化学测试结果表明, 与Li0.79MO和Li0.08MO催化剂相比, 基于Li0.30MO为正极催化剂的锂-氧气电池在电流密度100 mA•g–1和限定容量800 mAh•g–1的条件下具有较高的放电比容量(14655.9 mAh•g–1)、较低的充电电压(3.83 V)和较高的能量转换效率(72.2%). 而且该电池体系在充放电循环140圈后充电终止电压仍低于4.3 V. 最终认为制得的Li0.30MO材料具有优异的催化性能归因于其稳定的层状-岩盐相复合结构以及结构中富含的氧化镍相和氧空位之间的协同作用. 这些优点能够促进放电产物的可逆形成与分解, 从而提高锂-氧气电池循环性能.  相似文献   
72.
钙钛矿太阳能电池以其高效、低成本的特点备受关注。到目前为止,钙钛矿太阳能电池的最高光电转换效率已经超过25%,显示出良好的应用前景。钙钛矿薄膜的结晶性能是决定器件性能的关键,因此,调控钙钛矿薄膜的生长过程至关重要。本工作中,我们发现通过简单调节前驱体溶剂,即调节二甲基亚砜:1,4-丁内酯:N,N-二甲基甲酰胺(DMSO:GBL:DMF)的三种混合溶剂的比例,可实现钙钛矿薄膜中PbI2和PbI2(DMSO)含量的调节,从而调节电池的器件性能。此外,本工作系统研究了PbI2和PbI2(DMSO)的含量对器件性能的影响。结果表明,PbI2(DMSO)的形成会导致300–425nm波长范围内电池的外量子效率(EQE)降低,从而导致器件性能下降。相反,通过在前驱体溶液中添加额外的碘化亚甲基铵(MAI),可以抑制PbI2和PbI2(DMSO)的形成。  相似文献   
73.
以1,2-二氯乙烷为溶剂,三氯化铁为催化剂,1,3,5-三苯基苯、甲苯为单体,二甲氧基甲烷为交联剂进行聚合反应,反应完成后,以甲醇为溶剂索氏提取粗产物,干燥、研磨后得到含有苯基官能团的新型多孔有机骨架材料(POFs)。用优化的填料量填装了一种新型POFs固相萃取柱,旨在发展一种新的地表水中21种糖皮质激素的前处理方法,并对新型POFs固相萃取柱的吸附性能进行了重复性试验。结果表明:使用填料量为20 mg的POFs固相萃取柱时,吸附性能和稳定性较好,且该POFs固相萃取柱至少可以重复使用5次,减少了一次性试验用品的消耗。用此POFs固相萃取柱对地表水进行前处理,采用高效液相色谱-四极杆/静电场轨道阱高分辨质谱对地表水中21种糖皮质激素进行高通量筛查检测,21种糖皮质激素标准曲线的线性范围为20~100μg·L^(-1),测定下限为20μg·L^(-1)。方法用于实际水库中水样分析,6个水库水样中均有糖皮质激素检出,检出总量为2.68~11.64μg·L^(-1),与使用Cleanert PEP-2固相萃取柱的测定结果相比,所得结果在同一个数量级水平,说明二者对水样中的糖皮质激素的富集浓缩具有相似的效果。  相似文献   
74.
本文以最大径向应力,最大剪应力和最大切向应力为主要的破碎准则,利用二元分配法分析了诸破碎准则间权的分配,采用正态函数、降正态函数和升正态函数为各个破碎准则的录属函数,由此提出了爆炸破碎的过粉碎区,初始裂缝区和纯粹拉断区划分的综合评价方法。实例证明,对于大药量或小药量爆炸,以上方法均可成立。  相似文献   
75.
杨海兴 《力学学报》1991,23(3):355-360
本文利用文献[1]的结果,继续讨论 Chaplygin 球在微粗糙平面上滚动的稳定性。严格证明了在粘性和库仓两种磨擦条件下球绕最大惯量主轴滚动的一致稳定性,和在粘性摩擦条件及球的最大与中间主惯量矩十分接近的前提下球绕最小惯量主轴滚动的不稳定性。  相似文献   
76.
为了扩大WC-Ni-Mo-PbO四组元复合材料在工程实际中的应用范围,利用中频感应热压法制备了Wc-Ni-Co-Mo-PbO系高温自润滑金属陶瓷材料,并对其物理机械性能和摩擦学性能进行了试验研究,结果表明,含镍和钴这两组元之重量比为2的Wc-Ni-Co-Mo_PbO材料的综合性能最好,即使在600℃的高温下也具有较高的机械强度和相当好的摩擦学性能,且其在高速、重载下的摩擦磨损性能也比较好,X射线衍射分析发现,这种材料在600℃时的摩擦表面形成了均匀分布的PbWO4膜,这是其在高温下具有良好自润滑性的根本原因,在烧结温度下,WC可溶解于钴相形成面心立方结构的Co3W3C、Co2W4C和Co3W6C化合物,这能增强材料中金属相与陶瓷相的结合力。在自然降温冷却过程中,从钴相中析出Co3W和元素碳,后者可与钼形成MoC,进而形成Wc-MoC固溶体,这既能细化WC晶粒,又能强化晶界,而且钴与镍形成的连续固溶体可以使金属相得以强化。这些都是提高材料的高温机械性能和摩擦学性能的直接原因。  相似文献   
77.
本文对气固冲蚀和浆体冲蚀条件下耐磨环氧胶粘涂层的磨损特性进行了研究。结果表明,这种涂层的冲蚀磨损是由粘结剂的磨损和抗磨填料的磨损所组成;填料粒度和磨料粒度都对涂层的气固冲蚀磨损有影响,但在给定的试验条件下,填料粒度对涂层的浆体冲蚀磨损影响甚微。文章指出,耐磨环氧胶粘涂层在气固冲蚀和浆体冲蚀下的磨损机理相似,但磨损规律却有所不同;耐磨环氧胶粘涂层尤其适用于浆体冲蚀的场合,可以明显地提高机械过流部件的使用寿命。  相似文献   
78.
微加速度传感器的结构刚度分析新法   总被引:1,自引:0,他引:1  
微传感器结构刚度是优化传感器结构尺寸、研究传感器动态响应特性的一个重要参数.目前多采用有限元分析获取这一参数,但该方法难于给出一个物理思想比较明确的解析表达式.针对自主开发设计的一种具有复杂微结构的加速度传感器,提出综合运用力法和能量法原理求解其主轴刚度,并通过仿真分析验证了理论推导.理论计算与仿真分析的结果有较好的一致性.该方法可推广应用于具有对称、静不定微结构的加速度传感器的刚度分析.  相似文献   
79.
沟槽对建筑物减震作用的动光弹研究   总被引:5,自引:0,他引:5  
本文用动光弹方法实验研究了沟槽对爆炸地震波的衰减作用和对建筑物的保护作用分析表明:在模型实验条件下,当槽深大于20mm时,地震波的大部分能量被槽挡住,地震波对槽后的建筑物影响甚小,当槽深小于15mm时,槽与建筑物之间应力场较强,临界深度在15~20mm左右,这一深度大约是爆生瑞利波波峰深度的3~4倍。槽宽度对地震波衰减作用不大。  相似文献   
80.
本文在拉普拉斯变换空间中,运用摄动理论和“弹性-粘弹性”对应性原理,提出了一种新的粘弹性问题边界元求解法。文中结合广义变分原理,导出了摄动粘弹性边界元方程,并给出了摄动粘弹性问题的基本解。最后,详述了一阶摄动的求解过程,并给出了算例。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号